Derivation of the solar geometric relationships using vector analysis
Alistair B. Sproul
Renewable Energy, 2007, vol. 32, issue 7, 1187-1205
Abstract:
The standard mathematical approach used in deriving equations to describe the apparent motion and position of the Sun is spherical trigonometry. Additionally, the derivation of the equations for the intensity of the direct beam radiation, incident on the surface of a solar collector or architectural surface, also generally relies on the same approach. An alternative approach utilizing vector analysis is used to derive all of these equations. The technique greatly simplifies the derivation of equations for quantities such as the declination, altitude and azimuth of the Sun, and the intensity of the direct beam radiation on a tilted panel with an arbitrary orientation. Additionally, it allows a simple derivation of the equations needed to accurately describe the Equation of Time and the right ascension.
Keywords: Solar vector; Solar geometry; Vector analysis (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148106001054
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:7:p:1187-1205
DOI: 10.1016/j.renene.2006.05.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().