EconPapers    
Economics at your fingertips  
 

Derivation of the solar geometric relationships using vector analysis

Alistair B. Sproul

Renewable Energy, 2007, vol. 32, issue 7, 1187-1205

Abstract: The standard mathematical approach used in deriving equations to describe the apparent motion and position of the Sun is spherical trigonometry. Additionally, the derivation of the equations for the intensity of the direct beam radiation, incident on the surface of a solar collector or architectural surface, also generally relies on the same approach. An alternative approach utilizing vector analysis is used to derive all of these equations. The technique greatly simplifies the derivation of equations for quantities such as the declination, altitude and azimuth of the Sun, and the intensity of the direct beam radiation on a tilted panel with an arbitrary orientation. Additionally, it allows a simple derivation of the equations needed to accurately describe the Equation of Time and the right ascension.

Keywords: Solar vector; Solar geometry; Vector analysis (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148106001054
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:7:p:1187-1205

DOI: 10.1016/j.renene.2006.05.001

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1187-1205