An experimental study on the efficiency of the submerged plate wave energy converter
G. Orer and
A. Ozdamar
Renewable Energy, 2007, vol. 32, issue 8, 1317-1327
Abstract:
Several studies have been made using submerged plates for wave-damping purpose. A pulsating flow occurs opposite to the direction of wave propagation below these wave breakers. This water flow can be used for energy production purposes. In this study, the energy efficiency of the plate wave energy converter is determined experimentally. The length of the plate L=1m, the water depth d=60cm, the width of the plate b=60cm and the thickness t=2cm were held constant through all the experiments. Each experiment set has a total number of 20 different wave properties composed of T=1.16, 1.50, 1.87 and 2.05s wave periods and H=2, 4, 6, 8 and 10cm wave height values. The velocity and the wave length of the water flow occuring below the plate were measured for several conditions such as: 1. the plate only, 2. the plate and a triangular structure below it, with five different heights, 3. The plate and a vertical wall below it, with two different heights. In this manner, the submerged plate wave energy converter efficiency values were determined for 20 different conditions. It is understood that the efficiency of the submerged plate wave energy converters can reach up to 60% and the existence of a vertical wall below the plate rather than a triangular form is more efficient.
Keywords: Energy; Renewable energy; Wave energy (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148106001224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:8:p:1317-1327
DOI: 10.1016/j.renene.2006.06.008
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().