Numerical study of the heat and mass transfer in inclined glazing cavity: Application to a solar distillation cell
R. Chouikh,
L. Ben Snoussi and
A. Guizani
Renewable Energy, 2007, vol. 32, issue 9, 1511-1524
Abstract:
A numerical analysis is performed for the natural convection flow resulting from the combined buoyancy effects of thermal and mass diffusion in an inclined cavity. This work enters within the framework of general study dealing with the mathematical model for solar brackish water desalination unit. The problem is stated in a Cartesian coordinates system, involves the use of a control volume-based finite-element method and solves the full vorticity transport equation together with the stream function, concentration and energy equations. The predicted stream function patterns, isoconcentration and isotherms are presented for different thermal Rayleigh numbers. The heat and mass transfer evolution are explained in terms of dynamic and temperature fields of the flow in the inclined cavity. In particular, the desirable flow for enhancing the performance of the solar distiller is determined by examining flow patterns.
Keywords: Buoyancy effects; CVFEM; Heat and mass transfer; Modeling (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148106001790
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:32:y:2007:i:9:p:1511-1524
DOI: 10.1016/j.renene.2006.07.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().