EconPapers    
Economics at your fingertips  
 

Visible light-active nitrogen-doped TiO2 thin films prepared by DC magnetron sputtering used as a photocatalyst

K. Prabakar, T. Takahashi, T. Nezuka, K. Takahashi, T. Nakashima, Y. Kubota and A. Fujishima

Renewable Energy, 2008, vol. 33, issue 2, 277-281

Abstract: The visible light-active nitrogen-doped TiO2 has been prepared by dc-reactive magnetron sputtering using Ti target in an Ar+O2/N gas mixture. The preparation of highly crystallized anatase TiOxNy thin films with various nitrogen concentrations allowed us to identify the optimum nitrogen flow ratio for the photocatalytic oxidation (PCO) of 2-propanol. At higher nitrogen flow rate, nitrogen is found to be difficult to substitute for oxygen having been predicted to contribute the band gap narrowing, giving rise to undesired deep level defects. In addition, Raman spectroscopy and X-ray diffraction (XRD) studies revealed that highly crystallized anatase growth of nitrogen-doped TiOxNy thin films are difficult at higher nitrogen flow rate. The optical band gap was found to be lower for the films deposited at 2sccm of nitrogen flow rate. The PCO of 2-propanol was studied as a function of nitrogen flow rate using in situ FTIR spectroscopy. The PCO of 2-propanol found to proceed along two routes: one was through the chemisorbed species, 2-propoxide to form the CO2 directly; the other was through conversion of 2-propanol to acetone, followed by formation of formate species, and finally CO2.

Keywords: TiOxNy thin films; Photocatalyst; Methanol decomposition; Sputtering (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148107001711
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:2:p:277-281

DOI: 10.1016/j.renene.2007.05.018

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:33:y:2008:i:2:p:277-281