Exergy analysis of a passive solar still
J.C. Torchia-Núñez,
M.A. Porta-Gándara and
J.G. Cervantes-de Gortari
Renewable Energy, 2008, vol. 33, issue 4, 608-616
Abstract:
This paper presents a steady-state and transient theoretical exergy analysis of a solar still, focused on the exergy destruction in the components of the still: collector plate, brine and glass cover. The analytical approach states an energy balance for each component resulting in three coupled equations where three parameters—solar irradiance, ambient temperature and insulation thickness—are studied. The energy balances are solved to find temperatures of each component; these temperatures are used to compute energy and exergy flows. Results in the steady-state regime show that the irreversibilities produced in the collector account for the largest exergy destruction, up to 615W/m2 for a 935W/m2 solar exergy input, whereas irreversibility rates in the brine and in the glass cover can be neglected. For the same exergy input a collector, brine and solar still exergy efficiency of 12.9%, 6% and 5% are obtained, respectively. The most influential parameter is solar irradiance. During the transient regime, irreversibility rates and still temperatures find a maximum 6h after dawn when solar irradiance has a maximum value. However, maximum exergy brine efficiency, close to 93%, is found once TcolKeywords: Thermodynamics; Solar stills; Exergy; Efficiency; Renewable energy (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148107001139
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:4:p:608-616
DOI: 10.1016/j.renene.2007.04.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().