Application of fluid–structure interaction simulation of an ocean wave energy extraction device
Emmanuel B. Agamloh,
Alan K. Wallace and
Annette von Jouanne
Renewable Energy, 2008, vol. 33, issue 4, 748-757
Abstract:
A numerical technique that employs a computational fluid dynamics (CFD) code is used to perform coupled fluid–structure interaction simulation of a wave energy device in order to assess power output in a 3D numerical wave flume. The current method determines the motion of the buoy from the dynamic solution of the fluid flow problem and the dynamic buoy motion problem rather than prescribing the motion of the buoy. The power output of the device is calculated for different wave conditions. The technique was expanded for an array of two buoys to determine the interference between them.
Keywords: Ocean wave energy; Computational fluid dynamics; Buoy (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014810700119X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:4:p:748-757
DOI: 10.1016/j.renene.2007.04.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().