Opportunities for hydrogen production in connection with wind power in weak grids
Magnus Korpås and
Christopher J. Greiner
Renewable Energy, 2008, vol. 33, issue 6, 1199-1208
Abstract:
This paper gives an overview of the opportunities that exist for combining wind power and hydrogen (H2) production in weak grids. It is described how H2 storage can be applied in both isolated and grid-connected systems, and how the produced H2 can be utilized for stationary energy supply and/or as a fuel for transportation. The paper discusses the benefits and limitations of the different H2 storage applications, and presents a logistic simulation model for performance evaluation of wind-H2 plants. A case study simulating the use of excess wind power in a weak distribution grid to produce H2 for vehicles has been presented. It is shown that the penetration of wind power can be significantly increased by introducing electrolytic H2 production as a controllable load. The results also indicate that there are large benefits of using the grid as backup for H2 production in periods with low wind speed, regarding the H2 storage sizing and the electrolyser operating conditions.
Keywords: Wind power; Hydrogen; Weak grid; Electrolysis; Logistic simulation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148107002297
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:6:p:1199-1208
DOI: 10.1016/j.renene.2007.06.010
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().