Technical comparison of a CHP using various blends of gasohol in an IC engine
Mohammad Ameri,
Barat Ghobadian and
Iman Baratian
Renewable Energy, 2008, vol. 33, issue 7, 1469-1474
Abstract:
The effects of bioethanol addition to gasoline on an combined heat and power with internal combustion engine (ICECHP) are investigated experimentally and theoretically. In the theoretical study, a multi-zone spark ignition (SI) engine model is developed. This model was initially developed for gasoline fueled SI engine. However, it was adapted for SI engines running on gasoline–bioethanol blend. Experimental applications have been carried out with the gasoline fuel and the model results have been validated. Using the theoretical model, effects of bioethanol addition to gasoline on output temperature, flow availability, and efficiency are investigated. The results have shown when the bioethanol blend increases, the maximum cylinder pressure and temperature increase and carbon monoxide volume percentage reduces. Also, as the bioethanol blend increases, the availability of the flue gas increases as well. It is shown that among the various blends of gasohol, E20 has the maximum availability for heat recovery. The results of the efficiency investigation have shown that the efficiency of CHP is higher than the efficiency of separate heat and power (SHP) production. In fact, if the bioethanol blend in gasohol increases, the efficiency of the CHP system increases as well. It has been shown that E20 has the largest efficiency of ICECHP using gasohol.
Keywords: Bioethanol; CHP; ICE; Gasohol (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148107002911
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:7:p:1469-1474
DOI: 10.1016/j.renene.2007.09.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().