Innovatory designs for ducted wind turbines
Ssu-Yuan Hu and
Jung-Ho Cheng
Renewable Energy, 2008, vol. 33, issue 7, 1491-1498
Abstract:
Designs for conventional ducted wind turbines usually include a large inlet for more absorption of the airflow. However, the most efficient solution should be increasing the speed of wind. In this paper, a bucket-shape ducted wind turbine is proposed and studies show that a sucking effect can be produced according to the Bernoulli's principle, and this significantly increases the wind speed inside the duct and substantially enhances the efficiency of the wind turbine. Moreover, the geometry of the duct is optimized by the combination of an improved complex algorithm, an object-oriented optimizing program interface, and simulations by CFD software. According to the analyses, the optimal shape for the interior of the duct appears to be an unconventional nozzle, which extends the range of wind speed by 60%.
Keywords: Ducted wind turbines; Optimization; CFD; Wind power; Renewable energy (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148107002704
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:7:p:1491-1498
DOI: 10.1016/j.renene.2007.08.009
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().