Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system
A. Mellit,
S.A. Kalogirou,
S. Shaari,
H. Salhi and
A. Hadj Arab
Renewable Energy, 2008, vol. 33, issue 7, 1570-1590
Abstract:
In this paper, a suitable adaptive neuro-fuzzy inference system (ANFIS) model is presented for estimating sequences of mean monthly clearness index (K¯t) and total solar radiation data in isolated sites based on geographical coordinates. The magnitude of solar radiation is the most important parameter for sizing photovoltaic (PV) systems. The ANFIS model is trained by using a multi-layer perceptron (MLP) based on fuzzy logic (FL) rules. The inputs of the ANFIS are the latitude, longitude, and altitude, while the outputs are the 12-values of mean monthly clearness index K¯t. These data have been collected from 60 locations in Algeria. The results show that the performance of the proposed approach in the prediction of mean monthly clearness index K¯t is favorably compared to the measured values. The root mean square error (RMSE) between measured and estimated values varies between 0.0215 and 0.0235 and the mean absolute percentage error (MAPE) is less than 2.2%. In addition, a comparison between the results obtained by the ANFIS model and artificial neural network (ANN) models, is presented in order to show the advantage of the proposed method. An example for sizing a stand-alone PV system is also presented. This technique has been applied to Algerian locations, but it can be generalized for any geographical position. It can also be used for estimating other meteorological parameters such as temperature, humidity and wind speed.
Keywords: Clearness index Kt; Solar radiation; PV system sizing; ANFIS; ANN (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148107002662
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:33:y:2008:i:7:p:1570-1590
DOI: 10.1016/j.renene.2007.08.006
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().