Dynamic behavior and transient stability analysis of fixed speed wind turbines
Mohsen Rahimi and
Mostafa Parniani
Renewable Energy, 2009, vol. 34, issue 12, 2613-2624
Abstract:
This paper analytically investigates the dynamic behavior of fixed speed wind turbines (FSWTs) under wind speed fluctuations and system disturbances, and identifies the nature of transient instability and system variables involved in the instability. The nature of transient instability in FSWT is not similar to synchronous generators in which the cause of instability is rotor angle instability. In this paper, the study of dynamic behavior includes modal and sensitivity analysis, dynamic behavior analysis under wind speed fluctuation, eigenvalue tracking, and using it to characterize the instability mode, and investigating possible outcomes of instability. The results of theoretical studies are verified by time domain simulations. It is found that the instability occurs due to the mechanical dynamics and the instability is closely related to increasing of generator slip.
Keywords: FSWT; Modal analysis; Wind speed fluctuation; Transient stability; Mechanical dynamics; Eigenvalue tracking (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109002924
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:34:y:2009:i:12:p:2613-2624
DOI: 10.1016/j.renene.2009.06.019
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().