EconPapers    
Economics at your fingertips  
 

Complex-valued prediction of wind profile using augmented complex statistics

D.P. Mandic, S. Javidi, S.L. Goh, A. Kuh and K. Aihara

Renewable Energy, 2009, vol. 34, issue 1, 196-201

Abstract: This paper presents a novel approach for the simultaneous modelling and forecasting of wind whereby the wind field is considered as a vector of its speed and direction components in the field of complex numbers C. To account for the intermittency and coupling of wind speed and direction, we propose to use the recently introduced framework of augmented complex statistics. The augmented complex least mean square (ACLMS) algorithm is introduced and its usefulness in wind forecasting is analysed. Simulations over different wind regimes support the approach.

Keywords: Wind forecasting; Complex representation; Augmented statistics (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148108001225
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:34:y:2009:i:1:p:196-201

DOI: 10.1016/j.renene.2008.03.022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:196-201