Economics at your fingertips  

Wind integration into various generation mixtures

Jesse D. Maddaloni, Andrew M. Rowe and Gerrit van Kooten

Renewable Energy, 2009, vol. 34, issue 3, 807-814

Abstract: A load balance model is used to quantify the economic and environmental effects of integrating wind power into three typical generation mixtures. System operating costs over a specified period are minimized by controlling the operating schedule of the existing power generating facilities for a range of wind penetrations. Unlike other studies, variable generator efficiencies, and thus variable fuel costs, are taken into account, as are the ramping constraints on thermal generators. Results indicate that the system operating cost will increase by 83%–280% (pending generation mixture) at a wind penetration of 100% of peak demand. System emissions also decrease by 13%–32% (depending on the generation mixture) at a wind penetration of 100%. This leads to emission abatement costs in the range of $1300/tonne-CO2e for hydro dominated mixtures, $240/tonne-CO2e for coal dominated mixtures, and $215/tonne-CO2e for natural gas dominated mixtures.

Keywords: Wind power integration; Generation mixtures; Emissions cost (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Wind Integration into Various Generation Mixtures (2007) Downloads
Working Paper: Wind Integration into Various Generation Mixtures (2007) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

DOI: 10.1016/j.renene.2008.04.019

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2021-06-30
Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:807-814