EconPapers    
Economics at your fingertips  
 

Performance of a dual-purpose solar continuous adsorption system

M.A. Alghoul, M.Y. Sulaiman, K. Sopian and B.Z. Azmi

Renewable Energy, 2009, vol. 34, issue 3, 920-927

Abstract: A conceptual design and performance of a dual-purpose solar continuous adsorption system for domestic refrigeration and water heating is described. Malaysian activated carbon and methanol are used as the adsorbent–adsorbate pair. The heat rejected by the adsorber beds and condensers during the cooling process of the refrigeration part is recovered and used to heat water for the purpose of domestic consumption. In a continuous 24-h cycle, 16.9MJ/day of heat can be recovered for heating of water in the storage tanks. In the single-purpose intermittent solar adsorption system, this heat is wasted. The total energy input to the dual-purpose system during a 24-h operation is 61.2MJ/day and the total energy output is 50MJ/day. The latter is made up of 44.7MJ/day for water heating and 5.3MJ/day for ice making. The amount of ice that can be produced is 12kg/day. Using typical value for the efficiency of evacuated tube collector of water heating system of 65%, the following coefficient of performances (COP's) are obtained: 44% for adsorption refrigeration cycle, 73% for dual-purpose solar water heater, 9.1% for dual-purpose solar adsorption refrigeration and 82.1% for dual-purpose of both solar water heater and refrigerator.

Keywords: Solar thermal; Adsorption; Activated carbon-methanol pair; Continuous cycle; Dual system of refrigeration; Water heating (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148108002310
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:34:y:2009:i:3:p:920-927

DOI: 10.1016/j.renene.2008.05.037

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:34:y:2009:i:3:p:920-927