EconPapers    
Economics at your fingertips  
 

Effect of microencapsulated phase change material in sandwich panels

Cecilia Castellón, Marc Medrano, Joan Roca, Luisa F. Cabeza, Maria E. Navarro, Ana I. Fernández, Ana Lázaro and Belen Zalba

Renewable Energy, 2010, vol. 35, issue 10, 2370-2374

Abstract: Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results.

Keywords: Sandwich panel; Phase change material (PCM); Thermal energy storage (TES); Microencapsulation (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110001473
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:10:p:2370-2374

DOI: 10.1016/j.renene.2010.03.030

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:10:p:2370-2374