EconPapers    
Economics at your fingertips  
 

Electrochemical evolution of hydrogen on composite La–Ni–Al/Ni–S alloy film in water electrolysis

Qing Han, Yan Jin, Nianwen Pu, Kuiren Liu, Jianshe Chen and Xujun Wei

Renewable Energy, 2010, vol. 35, issue 12, 2627-2631

Abstract: The composite La–Ni–Al/Ni–S alloy film was obtained by molten salt electrolysis and aquatic electrodeposition in turn. The La–Ni–Al alloy film was prepared in Na3AlF6–La2O3–Al2O3 molten salt electrolyte by galvanostatic electrolysis at 100 mA cm−2. The results showed that La3+ and Al3+ ions could be co-reduced on the nickel cathode and form La–Ni–Al film at c.a. −0.5 V, which is much lower than that of the theoretical decomposition potential of lanthanum and aluminum. With high HER activity, the composite La–Ni–Al/Ni–S film (η150 = 70 mV, 353 K) could absorb large amount of H atoms. Instead of the dissolution of the Ni–S film, the absorbed H atoms would be oxidized under intermittent electrolysis effectively and prolong the lifetime of the cathode.

Keywords: Composite La–Ni–Al/Ni–S film; Water electrolysis; HER; Hydrogen storage alloy; Molten salt electrolysis (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110001321
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:12:p:2627-2631

DOI: 10.1016/j.renene.2010.03.015

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2627-2631