Wave energy plants: Control strategies for avoiding the stalling behaviour in the Wells turbine
Modesto Amundarain,
Mikel Alberdi,
Aitor J. Garrido,
Izaskun Garrido and
Javier Maseda
Renewable Energy, 2010, vol. 35, issue 12, 2639-2648
Abstract:
This study analyzes the problem of the stalling behaviour in Wells turbines, one of the most widely used turbines in wave energy plants. For this purpose two different control strategies are presented and compared. In the first one, a rotational speed control system is employed to appropriately adapt the speed of the double-fed induction generator coupling to the turbine, according to the pressure drop entry. In the second control strategy, an airflow control regulates the power generated by the turbine generator module by means of the modulation valve avoiding the stalling behaviour. It is demonstrated that the proposed rotational speed control design adequately matches the desired relationship between the slip of the double-fed induction generator and the pressure drop input, whilst the valve control using a traditional PID controller successfully governs the flow that modulates the pressure drop across the turbine.
Keywords: Wave energy; Oscillating water column; Wells turbine; Double-fed induction generator; Control (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014811000176X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:12:p:2639-2648
DOI: 10.1016/j.renene.2010.04.009
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().