EconPapers    
Economics at your fingertips  
 

Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil

Anita Ravindran, Sunil Adav and Shang-Shyng Yang

Renewable Energy, 2010, vol. 35, issue 12, 2649-2655

Abstract: A functional hydrogen producing consortium was isolated from soil by heat pre-treatment technique and hydrogen production at different substrate concentration was evaluated. The forest soil was heat pre-treated at 65, 80, 95, 105 and 120 °C temperature for 1 h. As revealed by PCR-DGGE analysis and hydrogen yield, the hydrogen producing microbial community changed with increase in heat pre-treatment temperatures giving potential hydrogen producing consortium at 95–105 °C soil pre-treatment. The maximum hydrogen production rate, hydrogen yield and cumulative hydrogen with 15–20 g glucose were 1390–1576 mL/L/day, 1.83–1.93 mol H2/mol glucose, and 2966–3146 mL H2/L, respectively. The metabolic pathways shifted from ethanol-type to acetate–formate type as soil pre-treatment temperature increased from 65 to 120 °C. The soil heat pre-treatment approach is effective for isolating hydrogen producing natural Clostridium consortium from the soil as enumerations of the functional strains need specific temperature range to florish.

Keywords: Hydrogen production; Functional consortium; Heat pre-treatment; Forest soil (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110001771
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:12:p:2649-2655

DOI: 10.1016/j.renene.2010.04.010

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:12:p:2649-2655