Optimization of paste formulation for TiO2 nanoparticles with wide range of size distribution for its application in dye sensitized solar cells
Suresh Kumar Dhungel and
Jesse G. Park
Renewable Energy, 2010, vol. 35, issue 12, 2776-2780
Abstract:
Dye sensitized solar cell (DSSC) can be an economically viable and technically simpler alternate to the silicon based solar cells. Films of nanocrystalline titanium dioxide (TiO2) are considered as the most suitable photoelectrode for DSSC. For this study, TiO2 powder of anatase phase, synthesized in acidic environment was used. The average diameter of the nanoparticles was ∼20 nm and BET surface area was 64.68 m2/g. Different TiO2 pastes were prepared by varying the proportion of TiO2 powder, α-terpineol, and ethyl cellulose (EC) in their composition. The TiO2 paste was cast on fluorine doped tin oxide (FTO) coated glass surface using doctor blade to prepare photoelectrode of TiO2 film. Composition of the paste ingredients was optimized by comparing the conversion efficiencies of the DSSCs fabricated with the photoelectrode of thickness ∼18 μm. The outcome of this study can be crucial for the preparation of reliable TiO2 paste in a simple way for its application in DSSC.
Keywords: Dye sensitized solar cell; Titanium dioxide; Nanocrystal; Conversion efficiency (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110001989
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:12:p:2776-2780
DOI: 10.1016/j.renene.2010.04.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().