Performance of nano-hydraulic turbine utilizing waterfalls
Toshihiko Ikeda,
Shouichiro Iio and
Kenji Tatsuno
Renewable Energy, 2010, vol. 35, issue 1, 293-300
Abstract:
The aim of this investigation was to develop an environmentally friendly nano-hydraulic turbine utilizing waterfalls. A model of an impulse type hydraulic turbine constructed and tested with an indoor type waterfall to arrive at an optimum installation condition. Effects of an installation parameter, namely distance between the rotor and the waterfall on the power performance were studied. The flow field around the rotor was examined visually to clarify influences of installation conditions on the flow field. The flow visualization showed differences of flow pattern around the rotor by the change of flow rate and rotational speed of the rotor. From this study it was found that the power performances of the rotor were changed with the distance between the rotor and the waterfalls. The maximum power coefficient of this turbine is approximately 60%. Also, to respond to changes in the waterfall flow rate, we placed a flat plate on the upper side of the rotor to control the water flow direction. As a result, we found that the coefficient of this turbine is increased with the flow rate and power could be obtained even when the flow rate changed by 3.5 times if the plate was placed on the upper side of the rotor. Although the power coefficient decreased when the plate was installed, the power coefficient still is from 53 to 58%.
Keywords: Nano-hydraulic turbine; Impulse turbine; Waterfalls; Performance; Field test (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109002973
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:1:p:293-300
DOI: 10.1016/j.renene.2009.07.004
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().