The calculation and analysis of glass-to-metal sealing stress in solar absorber tube
Dongqiang Lei,
Zhifeng Wang and
Jian Li
Renewable Energy, 2010, vol. 35, issue 2, 405-411
Abstract:
The failure or degradation of solar absorber tubes is the single largest cost factor for current parabolic trough solar power plant. The main failure reason is that there are residual stresses in the glass-to-metal joint which are generated during the cooling process of sealing. According to the thin shell theory and thermal stress theory, this paper presents the analytic solution for the glass-to-metal sealing residual stress. It also analyses how the thickness of glass tube, thickness of metal ring, and thermal expansion coefficient affect the residual stress distribution. In order to verify the calculation results, the photoelastic technique is used to measure the residual stress and the tensile test is used to obtain the point of the most dangerous stress and the tensile strength for the sealed specimens. It can be concluded that the maximum tensile stress happens at some distance near the sealing interface on the outer surface of glass tube. The seal strength increases when the thickness of the glass tube is increased. The analytic solution is proved feasible to analyze the residual stress of glass-to-metal seals in solar absorber tubes.
Keywords: Solar absorber tube; Glass-to-metal seals; Residual stress; Thin shell theory (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109002651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:2:p:405-411
DOI: 10.1016/j.renene.2009.05.021
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().