EconPapers    
Economics at your fingertips  
 

Time domain prediction of power absorption from ocean waves with latching control

Fuat Kara

Renewable Energy, 2010, vol. 35, issue 2, 423-434

Abstract: A three-dimensional panel method using Neumann–Kelvin method is presented for the transient wave-body interaction problems in order to absorb maximum power from the sea. The exact initial boundary value problem is linearized about a uniform flow, and recast as an integral equation using the transient free-surface Green function. The hydrodynamics part of the solution including radiation and diffraction problem is solved as impulsive velocity problem. A discrete control of latching is used to increase the bandwidth of the efficiency of the wave energy converters (WEC). When latching control is applied to WEC in the case of off-resonance condition it increases the amplitude of the motion as well as absorbed power. It is assumed that the exciting force is known in the close future and that body is hold in position during the latching time. A heaving hemisphere as a point-absorber WEC is used for the numerical prediction of the different parameters. The calculated hydrodynamics coefficients, response amplitude operator, absorbed power, relative capture width of this device compared with analytical and other published results.

Keywords: Time domain; Transient free-surface Green function; Boundary integral equation; Absorbed power; Relative capture width; Latching control (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109002730
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:2:p:423-434

DOI: 10.1016/j.renene.2009.06.003

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:2:p:423-434