Power optimization of wind turbines with data mining and evolutionary computation
Andrew Kusiak,
Haiyang Zheng and
Zhe Song
Renewable Energy, 2010, vol. 35, issue 3, 695-702
Abstract:
A data-driven approach for maximization of the power produced by wind turbines is presented. The power optimization objective is accomplished by computing optimal control settings of wind turbines using data mining and evolutionary strategy algorithms. Data mining algorithms identify a functional mapping between the power output and controllable and non-controllable variables of a wind turbine. An evolutionary strategy algorithm is applied to determine control settings maximizing the power output of a turbine based on the identified model. Computational studies have demonstrated meaningful opportunities to improve the turbine power output by optimizing blade pitch and yaw angle. It is shown that the pitch angle is an important variable in maximizing energy captured from the wind. Power output can be increased by optimization of the pitch angle. The concepts proposed in this paper are illustrated with industrial wind farm data.
Keywords: Wind turbine; Data mining; Neural networks; Optimization; Evolutionary computation algorithms (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109003772
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:3:p:695-702
DOI: 10.1016/j.renene.2009.08.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().