The importance of axial effects for borehole design of geothermal heat-pump systems
D. Marcotte,
P. Pasquier,
F. Sheriff and
M. Bernier
Renewable Energy, 2010, vol. 35, issue 4, 763-770
Abstract:
This paper studies the effects of axial heat conduction in boreholes used in geothermal heat pump systems. The axial effects are examined by comparing the results obtained using the finite and infinite line source methods. Using various practical design problems, it is shown that axial effects are relatively important. Unsurprisingly, short boreholes and unbalanced yearly ground loads lead to stronger axial effects. In one example considered, it is shown that the borehole length is 15% shorter when axial conduction effects are considered. In another example dealing with underground water freezing, the amount of energy that has to be removed to freeze the ground is three times higher when axial effects are considered.
Keywords: Infinite line source; Finite line source; Ground loop heat exchangers; Hybrid systems; Underground water freezing (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109004108
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:4:p:763-770
DOI: 10.1016/j.renene.2009.09.015
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().