A numerical investigation into the effect of diffusers on the performance of hydro kinetic turbines using a validated momentum source turbine model
David L.F. Gaden and
Eric L. Bibeau
Renewable Energy, 2010, vol. 35, issue 6, 1152-1158
Abstract:
Kinetic hydropower involves the use of hydro turbines, submerged within existing currents for power generation. They are applicable to ocean and tidal currents, rivers, and human-made channels. This versatility gives them advantages over conventional hydropower, however they suffer from low power densities. This numerical study investigates the use of diffusers to enhance the performance and viability of kinetic hydro turbines. To simplify the problem, the turbine is modeled as a momentum source region, a strategy that is first validated against Betz theory. The diffuser configuration produces 3.1 times more power than the turbine with no diffuser. A scaling analysis also shows a turbine with a diffuser outperforms a larger size turbine with no diffuser.
Keywords: Kinetic hydropower; Marine current turbine; River kinetic turbine; Momentum source model; Diffuser (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109004996
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:6:p:1152-1158
DOI: 10.1016/j.renene.2009.11.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().