EconPapers    
Economics at your fingertips  
 

Hydrodynamic impact of a tidal barrage in the Severn Estuary, UK

Junqiang Xia, Roger A. Falconer and Binliang Lin

Renewable Energy, 2010, vol. 35, issue 7, 1455-1468

Abstract: The Severn Estuary has a spring tidal range approaching 14m, which is among the highest tides in the world. Various proposals have been made regarding the construction of a tidal barrage across the estuary to enable tidal energy to be generated. The aim of the current study is to investigate the impact of constructing a tidal barrage on the hydrodynamic processes in the Severn Estuary using a numerical model. A two-dimensional hydrodynamic model based on an unstructured triangular mesh has been used in this study. The model employs a TVD finite volume method to solve the 2D shallow water equations, with the numerical scheme being second-order accurate in both time and space. The model has been calibrated by comparing model predictions with observed tidal levels and currents at different sites, for typical spring and neap tides, and it has also been verified using tidal level time series at four tide gauging stations measured in 2003. In order to predict the hydrodynamic processes with a barrage, the model domain was divided into two subdomains: one each side of the barrage. Details were given of the method used for representing the various hydraulic structures, including the sluices and turbines, along the proposed Cardiff-Weston barrage. The impact of constructing the barrage on the water levels and velocities was then investigated using this model. Model-predicted hydrodynamic parameters, without and with the barrage, were analysed in detail. Model predictions indicated that with the barrage the mean power output could reach 2.0GW with up to 25GWh units of electricity being generated over a typical mean spring tidal cycle. At some cross-sections, the maximum discharges were predicted to decrease by 30–50%, as compared with the corresponding discharges predicted without the barrage. The model also predicted that with the barrage, the maximum water levels upstream of the barrage would decrease by 0.5–1.5m, and with the peak tidal currents also being reduced considerably. For different operating modes, complex velocity fields were predicted to occur in the vicinity of the barrage.

Keywords: Severn Estuary; Tidal barrage; Hydrodynamics; Numerical model; Finite volume method; Domain decomposition (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148109005588
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:7:p:1455-1468

DOI: 10.1016/j.renene.2009.12.009

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:7:p:1455-1468