EconPapers    
Economics at your fingertips  
 

Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures

Ignacio Vieitez, Camila da Silva, Isabella Alckmin, Gustavo R. Borges, Fernanda C. Corazza, J. Vladimir Oliveira, Maria A. Grompone and Iván Jachmanián

Renewable Energy, 2010, vol. 35, issue 9, 1976-1981

Abstract: This work investigates and compares the reaction performance of soybean oil transesterification under supercritical methanol and ethanol, in a continuous catalyst-free process, as a cleaner alternative to conventional chemically catalyzed process. Reactions were performed in a tubular reactor, at 20 MPa, with oil to alcohol ratio of 1:40, varying the temperature in the range from 250 °C to 350 °C, and at two levels of water concentrations, 0 and 10 wt%. Although both processes proceeded with a relatively high reaction rate, conversion achieved by methanolysis was higher than that obtained by ethanolysis. Water positively affected both process: higher ester content and triacylglycerols depletion occurred when 10 wt% water was used compared with anhydrous conditions. Temperature increase favored the conversion of soybean oil to the corresponding methyl or ethyl esters, although temperatures above 300 °C increased the fatty acid degradation degree, a phenomenon responsible for the low ester contents obtained at the highest temperatures and lowest flow rates studied.

Keywords: Biodiesel; Supercritical methanol; Supercritical ethanol; Methanolysis; Ethanolysis (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110000443
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:9:p:1976-1981

DOI: 10.1016/j.renene.2010.01.027

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:35:y:2010:i:9:p:1976-1981