Using Copulas for analysis of large datasets in renewable distributed generation: PV and wind power integration in Iran
H. Valizadeh Haghi,
M. Tavakoli Bina,
M.A. Golkar and
S.M. Moghaddas-Tafreshi
Renewable Energy, 2010, vol. 35, issue 9, 1991-2000
Abstract:
Renewable distributed generation introduced as an environmental friendly alternative energy supply while it provided the power system with ever-growing technical benefits such as loss reduction and feeder voltage improvement. The evaluation of the effects of small residential photovoltaic and wind DG systems on various system operating indices and the system net load is complicated by both the probabilistic nature of their output and the variety of their spatial allocations. The increasing penetration of renewable distributed generation in power systems necessitates the modeling of this stochastic structure in operation and planning studies. An advanced stochastic modeling of the system requires multivariate uncertainty analysis involving non-normal correlated random variables. Such an analysis is to epitomize the aggregate uncertainty corresponding to spatially spread stochastic variables. In this paper, an integration study of photovoltaics and wind turbines, distributed in a distribution network, is investigated based on the stochastic modeling using Archimedean copulas as a new efficient tool. The basic theory concerning the use of copulas for dependence modeling is presented and focus is given on an Archimedean algorithm. A comprehensive case study for Davarzan area in Iran is presented after reviewing Iran's renewable energy status. This study shows an application of the presented technique when large datasets, assuming 10-min interval between data points of PV, wind and load profiles, are involved where a deterministic study is not trivial.
Keywords: Copula; Correlation; Dependence; Distributed generation; Monte Carlo simulation; Photovoltaics (PV); Wind energy (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110000480
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:35:y:2010:i:9:p:1991-2000
DOI: 10.1016/j.renene.2010.01.031
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().