Optimal interface based on power electronics in distributed generation systems for fuel cells
J.M. Andújar,
F. Segura,
E. Durán and
L.A. Rentería
Renewable Energy, 2011, vol. 36, issue 11, 2759-2770
Abstract:
A hybrid system comprising a fuel cell stack and a battery bank was developed, built and tested in this research work. This hybrid system was built to supply both DC and AC outputs. The voltage levels set on electrical interconnection points are achieved with several power conditioning stages controlled by Pulse Width Modulation (PWM). The main advantage of this system is its excellence as a test bench, since it allows testing system performance at different voltage-restricted interconnecting points. Besides, power electronics are observed to play an essential role in distributed generation systems. The applications of the developed hybrid system extend from Auxiliary Power Units (APU) in vehicles (cars, buses or trains) to Uninterruptible Power Systems (UPS) in hospitals, nursing homes, hotels, office buildings or schools.
Keywords: Distributed generation (DG); PEM fuel cell; Power electronics; Voltage control loop; PWM (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111001777
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:11:p:2759-2770
DOI: 10.1016/j.renene.2011.04.005
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().