EconPapers    
Economics at your fingertips  
 

Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system

M.J. Huang, P.C. Eames, S. McCormack, P. Griffiths and N.J. Hewitt

Renewable Energy, 2011, vol. 36, issue 11, 2932-2939

Abstract: Phase change materials (PCMs) are attractive for use in thermal energy storage applications and thermal regulation/control due to their high-energy storage density over a small temperature range. The direct use of phase change materials for energy storage and/or heat transfer applications has been limited due to the low thermal conductivity of the PCM particularly when solidifying on the heat transfer surface. A Phase change slurry (PCS) consists of small micro-encapsulated PCM particles suspended in a carrier fluid which enhances the heat transfer to the PCM. The PCS can serve not only as the thermal storage media but also as the heat transfer fluid, and hence may have many potentially important applications including in the field of heating, ventilation and air-conditioning (HVAC), refrigeration, solar energy and heat exchangers. A test system to examine PCS performance in residential thermal energy storage applications has been developed to both observe and characterise the thermal processes that occur in a thermal store with a helical coil heat exchanger. These test results will be used to improve the system design and identify limitations when used for intermittent application.

Keywords: Phase change slurry (PCS); Solar thermal energy storage; Thermal performance (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111001765
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:11:p:2932-2939

DOI: 10.1016/j.renene.2011.04.004

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:36:y:2011:i:11:p:2932-2939