Prediction of daily maximum temperature using a support vector regression algorithm
A. Paniagua-Tineo,
S. Salcedo-Sanz,
C. Casanova-Mateo,
E.G. Ortiz-García,
M.A. Cony and
E. Hernández-Martín
Renewable Energy, 2011, vol. 36, issue 11, 3054-3060
Abstract:
Daily maximum temperature can be used a good indicator of peak energy consumption, since it can be used to predict the massive use of heating or air conditioning systems. Thus, the prediction of daily maximum temperature is an important problem with interesting applications in the energy field, since it has been proven that electricity demand depends much on weather conditions. This paper presents a novel methodology for daily maximum temperature prediction, based on a Support Vector Regression approach. The paper is focused on different measuring stations in Europe, from which different meteorological variables have been obtained, including temperature, precipitation, relative humidity and air pressure. Two more variables are also included, specifically synoptic situation of the day and monthly cycle. Using this pool of prediction variables, it is shown that the SVMr algorithm is able to give an accurate prediction of the maximum temperature 24 h later. In the paper SVMr technique applied is fully described, including some bounds on the machine hyper-parameters in order to speed up the SVMr training process. The performance of the SVMr has been compared to that of different neural networks in the literature: a Multi-layer perceptron and an Extreme Learning Machine.
Keywords: Daily maximum temperature prediction; Support vector regression algorithms; Neural networks (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111001443
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:11:p:3054-3060
DOI: 10.1016/j.renene.2011.03.030
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().