Optimization of the size of a solar thermal electricity plant by means of genetic algorithms
J.M. Cabello,
J.M. Cejudo,
M. Luque,
F. Ruiz,
K. Deb and
R. Tewari
Renewable Energy, 2011, vol. 36, issue 11, 3146-3153
Abstract:
Solar thermal electricity technologies are attractive alternatives to produce electricity by means of a renewable source. One of these technologies is parabolic trough collectors. In Spain, the sale of solar electricity to the national grid is primed. There are three main parameters that affect the behaviour of these plants: area of solar collector field, capacity of thermal storage tanks and power of the auxiliary system. In this paper, a simplified model of the plant is used to optimize the size of its components that produces the maximum yearly profit. The use of traditional methods of optimization is not possible and genetic algorithms have been used. An important feature of the model is that the minimum level of the electricity production of the block of power can be fixed. Once the optimization has been performed, the traditional parameters that characterize the dimension of the plant are analysed (the solar multiple and the capacity factor). For a gross power of 50 MW, the optimum collector area varies between 583,000 m2 and 749,860 m2 with a thermal storage between 6.55 h and 13.46 h respectively. The economic benefit is always higher than 19.30 M€ per year and the cost of the electricity produced is about 18.5 c€/kWh.
Keywords: Solar thermal electricity; Optimization; Genetic algorithms (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111001327
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:11:p:3146-3153
DOI: 10.1016/j.renene.2011.03.018
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().