Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California
Yin Hang,
Ming Qu and
Fu Zhao
Renewable Energy, 2011, vol. 36, issue 2, 648-658
Abstract:
This paper presents a systematic energetic, economical, and environmental assessment on a solar cooling system for a medium-sized office building in Los Angeles, California by means of system modeling. The studied solar cooling system primarily consists of evacuated tube solar collectors, a hot water storage tank, a single-effect LiBr–H2O absorption chiller, and a gas-fired auxiliary heater. System performance optimization and sensitivity analysis were conducted by varying two major parameters (i.e. storage tank volume and collector area). The results suggest that a trade-off exists between economic performance indicated by the equivalent uniform annual cost (EUAC) and the energetic/environmental performance indicated by the solar fraction and CO2 reduction percentage, respectively. The cost of carbon footprint reduction was defined and served as an indicator for the overall system performance. Based on this indicator, the optimal system design could be found for a solar cooling system. The approach adapted in this study can be applied to other buildings located in different climate zones to reveal the cost and benefits of solar cooling technologies and facilitate decision-making.
Keywords: Solar cooling; Economical and environmental assessment, benchmark building; Single-effect absorption chiller; Optimization; Cost of carbon footprint reduction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110003605
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:2:p:648-658
DOI: 10.1016/j.renene.2010.08.005
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().