Dynamic discharging characteristics simulation on solar heat storage system with spherical capsules using paraffin as heat storage material
Shuangmao Wu,
Guiyin Fang and
Xu Liu
Renewable Energy, 2011, vol. 36, issue 4, 1190-1195
Abstract:
The dynamic characteristics of solar heat storage system with spherical capsules packed bed during discharging process are studied. According to the energy balance of solar heat storage system, the dynamic discharging processes model of packed bed with spherical capsules is presented. Paraffin is taken as phase change material (PCM) and water is used as heat transfer fluid (HTF). The temperatures of PCM and HTF, solid fraction and heat released rate are simulated. The effects of inlet temperature of HTF, flow rate of HTF and porosity of packed bed on the time for discharging and heat released rate are also discussed. The following conclusion can be drawn: (1) the heat released rate is very high and decreases rapidly with time during the liquid cooling stage, it is stable at the solidification cooling stage, then it decreases to zero at the solid cooling stage. (2) The time for complete solidification decreases when the HTF flow rate increases, but the effect is not so obvious when the HTF flow rate is higher than 13kg/min; (3) compared to the HTF inlet temperature and flow rate, the influence of porosity of packed bed on the time for complete solidification is not so significant.
Keywords: Solar heat storage; Discharging characteristics; Solidification process; Heat storage material; Spherical capsule (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110004830
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:4:p:1190-1195
DOI: 10.1016/j.renene.2010.10.012
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().