Three-dimensional analysis and investigation of the thermal and hydrodynamic behaviors of cylindrical storage tanks
Darci L. Savicki,
Horácio A. Vielmo and
Arno Krenzinger
Renewable Energy, 2011, vol. 36, issue 5, 1364-1373
Abstract:
A numerical analysis of the three-dimensional temperature and velocity fields in horizontal cylindrical storage tanks was performed. The phenomena of laminar natural convection and vertical stratification of temperature were considered. The developed three-dimensional transient computing code solves the equations of energy and momentum through the finite volume method. The simulation of fluid cooling process inside the tank showed the formation of stratified temperature profiles that matched those obtained experimentally. Based on several simulations, a correlation was proposed for determining the degree of thermal stratification inside the tank regarding thermal and geometrical parameters. From this correlation, an expression was proposed to predict the fluid temperature profiles along the time. This information is very important in many applications, such as in thermosiphon solar water heating systems, where the global efficiency of the system increases with the thermal stratification degree of the working fluid. Another case studied considered that the tank was connected to solar collectors, aiming at investigating the influence of the inlet jet position with and without a baffle plate on the preservation of the thermal stratification. Results showed that the baffle plate modified the velocity and temperature fields close to the inlet jet, allowing a better thermal stratification. Also the suitable choice of the inlet jet position allowed the formation of a more effective thermal stratification. Some other aspects of the internal dynamics of this kind of storage tank are presented and discussed. For the cases studied, the inlet jet next to the top led to a greater thermal stratification. However, it was verified that when the inlet jet temperature remains constant for a long period of time, and thus its temperature approaches the temperature of the water inside the tank, for the same height, the temperature profiles obtained become similar to the case of the inlet located at usual height of 2/3 of the diameter.
Keywords: Storage tanks; Three-dimensional numerical analysis; Finite volume method (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110004829
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:5:p:1364-1373
DOI: 10.1016/j.renene.2010.10.011
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().