Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge
Sheng Chang,
Jian-Zheng Li and
Feng Liu
Renewable Energy, 2011, vol. 36, issue 5, 1517-1522
Abstract:
Waste activated sludge (WAS) is the most favorable inoculum for dark fermentative hydrogen-producing processes, because it can be collected economically. In order to accelerate the start-up process and develop the efficiency and stability of a hydrogen production system, pretreatment of the seed sludge has been examined to enrich hydrogen-producing bacteria. Six pretreatment methods including acid, base, heat-shock, aeration, chloroform and 2-bromoethanesulfonate (BES) were performed on WAS in batch cultures utilizing glucose as the substrate. The results showed that, at 35 °C and initial pH of 7.0, hydrogen yields of the pretreated sludge (except for BES) were higher than the control test. The pretreatment methods resulted in different distributions of soluble metabolites. Acid pretreatment at pH of 3 was the best among all six pretreatment methods, and the maximal hydrogen yield of 1.51 mol/mol-glucose-consumed and the maximal specific hydrogen production of 22.81 mmolH2/g VSS were observed. The hydrogen yield of the acid treated sludge increased to 1.82 mol/mol-glucose-consumed after five repeated-batch cultivations. It was concluded that acid pretreatment is a simple, economic and effective method for enriching hydrogen-producing bacteria from WAS.
Keywords: Biological hydrogen production; Waste activated sludge; Pretreatment; Hydrogen yield; Fermentation type (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110005367
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:5:p:1517-1522
DOI: 10.1016/j.renene.2010.11.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().