An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour
J. Ross Halliday,
David G. Dorrell and
Alan R. Wood
Renewable Energy, 2011, vol. 36, issue 6, 1685-1692
Abstract:
This paper examines the appropriateness of the Fast Fourier Transform for decomposition and reconstruction of wave records taken at fixed locations and transposed to a different temporal and spatial point. In marine renewable energy, advanced control methods based on the future prediction of waves are being developed. These methods are based on the assumption that a forward looking prediction is available and over the years there has been a conjecture that the FFT may perform this role and that the prediction of wave behaviour at any point on the sea surface should be realizable. The validity of this statement is tested using numerical wave records.
Keywords: Fourier transform; Wave prediction; Dispersion relationship; Non-harmonic modelling (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110005525
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:6:p:1685-1692
DOI: 10.1016/j.renene.2010.11.035
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().