Enhancing biomethanation of municipal waste sludge with grease trap waste as a co-substrate
Zhenwei Zhu,
Michael K. Hsueh and
Qiang He
Renewable Energy, 2011, vol. 36, issue 6, 1802-1807
Abstract:
Grease trap waste (GTW) presents a challenge to wastewater treatment processes due to its slow biodegradation kinetics, high oxygen demand, and risks of pipeline blockage. The objective of this work was to evaluate the feasibility of GTW as an organic-rich co-substrate to improve biomethane production in the anaerobic digestion of municipal waste sludge (MWS) from sewage treatment, one of the most abundant feed materials to municipal anaerobic digesters. Waste characterization confirmed the high organic content of GTW at 138 gVS/L, which was 626% higher than that of MWS (19 gVS/L). The methane potential of GTW approximated 145 LMethane/LGTW, which was more than 15 times higher than that of MWS (8.9 LMethane/LMWS). When GTW was added as a co-substrate in addition to MWS, the high methane potential and organic content of GTW resulted in significant improvement in methane production during the anaerobic co-digestion of MWS, e.g. a 65% increase at the GTW loading of 5.5 gVS/L, representing a less than 4% (vol/vol) addition of GTW. Thus, the operational feasibility of anaerobic co-digestion using GTW as the co-substrate is enhanced by the insignificant volumetric GTW loading required for significant improvements in methane production. Process inhibition and reduction in biogas production, however, occurred with higher GTW loadings, suggesting the importance of proper GTW loading rates for the implementation of anaerobic co-digestion processes effective in improving biomethanation of municipal waste sludge.
Keywords: Food waste; Methane; Biogas; Wastewater; Renewable energy; anaerobic digestion (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110005161
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:6:p:1802-1807
DOI: 10.1016/j.renene.2010.11.014
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().