Numerical prediction of wind turbine noise
A. Tadamasa and
M. Zangeneh
Renewable Energy, 2011, vol. 36, issue 7, 1902-1912
Abstract:
This paper develops and validates the first principle based numerical method for predicting the noise radiated from the rotating Horizontal-Axis Wind Turbine (HAWT) blades. The noise radiated to the far-field was predicted by the code based on Ffowcs Williams–Hawkings (FW–H) equation, using both original non-permeable formulation and permeable formulation. A commercially available CFD solver, ANSYS CFX 11.0, was used to calculate the flow parameters on and around the blade surface that are required for FW–H codes. A capability of the solver for modelling the flow field around the wind turbine blades was validated by comparing with the experimental results of NREL phase VI wind turbine blades. The FW–H codes were validated using acoustic results of UH-1H helicopter rotor in hover and Hartzell aircraft propeller in forward motion, which were measured in anechoic wind tunnel facility. Then the developed FW–H acoustic codes were applied to calculate the noise radiated from NREL Phase VI wind turbine blades.
Keywords: Wind turbine noise; FW–H equation; NREL Phase VI blade (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148110005537
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:7:p:1902-1912
DOI: 10.1016/j.renene.2010.11.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().