EconPapers    
Economics at your fingertips  
 

Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration

L.W. Wang, Z. Tamainot-Telto, R. Thorpe, R.E. Critoph, S.J. Metcalf and R.Z. Wang

Renewable Energy, 2011, vol. 36, issue 8, 2062-2066

Abstract: Composite adsorbents, comprising activated carbon and expanded natural graphite, have been developed, and their thermal conductivity, permeability and adsorption performance were tested. The thermal conductivity varied with the ratio of activated carbon to expanded natural graphite. Thermal conductivity increased as the ratio of expanded graphite increased. Considering that the density of activated carbon for the composite adsorbent should not be lower than 200 kg/m3, otherwise the volumetric cooling capacity would be unacceptably low, the highest thermal conductivity obtained from experiments was 2.47 W m−1 K−1. The permeability was also measured, and the best result obtained was 4.378 × 10−12 m2. In order to evaluate the influence of heat and mass transfer on adsorption performance, the adsorption rate was tested using a Rubotherm magnetic suspension balance, and results showed that for the freezing conditions lower than −10 °C the performance of granular activated carbon was better than that of solidified adsorbent because of the reduced mass transfer of ammonia at low saturated pressure. The adsorption performance of consolidated adsorbents increased rapidly when the evaporating temperature was higher than −10 °C. When the evaporating temperature was 8 °C, the adsorption rate of consolidated adsorbent was improved by 29% if compared with that of granular adsorbent.

Keywords: Adsorption; Activated carbon; Expanded nature graphite; Thermal conductivity; Permeability (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111000115
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:8:p:2062-2066

DOI: 10.1016/j.renene.2011.01.005

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:36:y:2011:i:8:p:2062-2066