Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol
Guangxing Yang,
Hao Yu,
Feng Peng,
Hongjuan Wang,
Jian Yang and
Donglai Xie
Renewable Energy, 2011, vol. 36, issue 8, 2120-2127
Abstract:
A thermodynamic analysis of the oxidative steam reforming of glycerol (OSRG) for hydrogen production has been carried out with Aspen plus TM. The reaction was investigated at ambient pressure within the carbon-to-oxygen (C/O) ratio of 0.5–3.0, steam-to-carbon (S/C) ratio of 0.5–8.0 and temperature of 400–850 °C. Higher C/O and S/C ratios favor the production of hydrogen from glycerol. The highest hydrogen selectivity is obtained at 600–700 °C. To predict the potential technical obstacles in the glycerol reforming process, the OSRG process was compared with oxidative steam reforming of ethanol (OSRE) in terms of hydrogen production, autothermal condition and carbon deposition. The selectivity to hydrogen via OSRG is lower than that via OSRE under identical conditions. To achieve autothermal reforming, higher S/C and C/O ratios are required for reforming of glycerol than for ethanol due to the higher oxygen content in a glycerol molecule. From the viewpoint of thermodynamics, the glycerol reforming is more resistant to the carbon deposition. On the basis of the thermodynamic analysis and the preliminary experimental study, suggestions were proposed to guide the development of the glycerol reforming technique.
Keywords: Glycerol; Ethanol; Hydrogen; Oxidative steam reforming; Thermodynamics; Aspen plus TM (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111000449
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:8:p:2120-2127
DOI: 10.1016/j.renene.2011.01.022
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().