Comparing methods to calculate atmospheric stability-dependent wind speed profiles: A case study on coastal location
Giovanni Gualtieri and
Sauro Secci
Renewable Energy, 2011, vol. 36, issue 8, 2189-2204
Abstract:
Among all uncertainty factors affecting the wind power assessment at a site, wind speed extrapolation is probably one of most critical ones, particularly if considering the increasing size of modern multi-MW wind turbines, and therefore of their hub height. This work is intended as a contribution towards a possible harmonisation of methods and techniques, necessarily including surface roughness and atmospheric stability, aimed at extrapolating wind speed for wind energy purposes. Through the years, different methods have been used to this end, such as power law (PL), logarithmic law (LogL), and log-linear law (LogLL). Furthermore, aside from applying PL by using a mean wind shear coefficient observed between two heights (α¯), a number of methods have been developed to estimate PL exponent α when only surface data are available, such as those by Spera and Richards (SR), Smedman-Högström and Högström (SH) and Panofsky and Dutton (PD).
Keywords: Wind speed profile; Atmospheric stability; Power law; Logarithmic law; Surface roughness; Wind energy yield (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111000450
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:8:p:2189-2204
DOI: 10.1016/j.renene.2011.01.023
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().