Enhanced in situ ethanolysis of Jatropha curcas L. in the presence of cetyltrimethylammonium bromide as a phase transfer catalyst
Sintayehu Mekuria Hailegiorgis,
Shuhaimi Mahadzir and
Duvvuri Subbarao
Renewable Energy, 2011, vol. 36, issue 9, 2502-2507
Abstract:
Limited solubility of alcohols in vegetable oils hinders transesterification reaction process. Phase transfer catalysis can be of great advantage to enhance the reaction rates. Addition of cetyltrimethylammonium bromide as a phase transfer catalyst on in situ transesterification of Jatropha curcas L. with alkaline ethanol was investigated. Use of cetyltrimethylammonium bromide increased the yield of fatty acid ethyl esters. Optimum operating conditions were experimentally established. Yield of fatty acid ethyl esters increased from 89.2 wt% to 99.5 wt% with reduced requirement of ethanol by 16.7 v%, sodium hydroxide catalyst by 33.3 wt%, at a lower temperature of 30 °C and reduced mixing speed in shorter reaction time. The quality of fatty acid ethyl esters fuel conforms to the standards of ASTM D6751 and EN-14214.
Keywords: In situ transesterification; Jatropha curcas L.; Fatty acid ethyl esters; Phase transfer catalysis; Cetyltrimethylammonium bromide (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111001157
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:36:y:2011:i:9:p:2502-2507
DOI: 10.1016/j.renene.2011.03.001
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().