Performance analysis of a planted roof as a passive cooling technique in hot-humid tropics
Samah Hodo-Abalo,
Magolmèèna Banna and
Belkacem Zeghmati
Renewable Energy, 2012, vol. 39, issue 1, 140-148
Abstract:
Planted roofs are passive cooling techniques that reduce the thermal load of buildings. In this paper, the authors have developed a model for evaluating the cooling potential of green roofs. Transfer equations are solved using a finite difference scheme and Thomas algorithm. The study was conducted taking into account the Togolese climate conditions. The effect of Leaf Area Index (LAI) and Biot (Bi) number on diurnal variation of the Solar Heat gain Factor (SHF) is presented and analysed. A correlation for the estimation of the Solar Heat gain Factor as a function of LAI and Bi has been established. The results presented in terms of evapotranspiration (ET) and Solar Heat gains Factor (SHF) show notably that the foliage density and hence the vegetable canopy type selection influence the thermal efficiency of the bioclimatic insulation screen greatly. It was found that a larger LAI reduces the solar flux penetration, stabilizes the fluctuating values, and reduces the indoor air temperature.
Keywords: Thermal comfort; Heat transfer; Planted roof; Solar heat factor; Modelling; Simulation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111004125
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:39:y:2012:i:1:p:140-148
DOI: 10.1016/j.renene.2011.07.029
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().