EconPapers    
Economics at your fingertips  
 

Probabilistic approach to multi-objective Volt/Var control of distribution system considering hybrid fuel cell and wind energy sources using Improved Shuffled Frog Leaping Algorithm

Ahmad Reza Malekpour, Sajad Tabatabaei and Taher Niknam

Renewable Energy, 2012, vol. 39, issue 1, 228-240

Abstract: Deregulation and restructuring in power systems, the ever-increasing demand for electricity, and concerns about the environment are the major driving forces for using Renewable Energy Sources (RES). Recently, Wind Farms (WFs) and Fuel Cell Power Plants (FCPPs) have gained great interest by Distribution Companies (DisCos) as the most common RES. In fact, the connection of enormous RES to existing distribution networks has changed the operation of distribution systems. It also affects the Volt/Var control problem, which is one of the most important schemes in distribution networks. Due to the intermittent characteristics of WFs, distribution systems should be analyzed using probabilistic approaches rather than deterministic ones. Therefore, this paper presents a new algorithm for the multi-objective probabilistic Volt/Var control problem in distribution systems including RES. In this regard, a probabilistic load flow based on Point Estimate Method (PEM) is used to consider the effect of uncertainty in electrical power production of WFs as well as load demands. The objective functions, which are investigated here, are the total cost of power generated by WFs, FCPPs and the grid; the total electrical energy losses and the total emission produced by WFs, FCPPs and DisCos. Moreover, a new optimization algorithm based on Improved Shuffled Frog Leaping Algorithm (ISFLA) is proposed to determine the best operating point for the active and reactive power generated by WFs and FCPPs, reactive power values of capacitors, and transformers’ tap positions for the next day. Using the fuzzy optimization method and max-min operator, DisCos can find solutions for different objective functions, which are optimal from economical, operational and environmental perspectives. Finally, a practical 85-bus distribution test system is used to investigate the feasibility and effectiveness of the proposed method.

Keywords: Wind farms; Fuel cell power plant; Stochastic optimization; Volt/Var control; Probabilistic power flow (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111004472
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:39:y:2012:i:1:p:228-240

DOI: 10.1016/j.renene.2011.08.004

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:228-240