Wake effect in wind farm performance: Steady-state and dynamic behavior
F. González-Longatt,
P. Wall and
V. Terzija
Renewable Energy, 2012, vol. 39, issue 1, 329-338
Abstract:
The aim of this paper is to evaluate the impact of the wake effect on both the steady-state operation and dynamic performance of a wind farm and provide conclusions that can be used as thumb rules in generic assessments where the full details of the wind farms are unknown. A simplified explicit model of the wake effect is presented, which includes: the cumulative impact of multiple shadowing, the effects of wind direction and the wind speed time delay. The model is implemented in MATLAB® and then integrated into a power system simulation package to describe the wake effect and its impact on a wind farm, particularly in terms of the wake coefficient and overall active power losses. Results for two wind farm layouts are presented to illustrate the importance of wind turbine spacing and the directionality of wind speeds when assessing the wake effect during steady-state operation and dynamic behavior.
Keywords: Wind farm; Dynamic behavior; Steady-state behavior; Power system; Steady-state wake effect (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (65)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111005155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:39:y:2012:i:1:p:329-338
DOI: 10.1016/j.renene.2011.08.053
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().