EconPapers    
Economics at your fingertips  
 

Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish

Farid C. Christo

Renewable Energy, 2012, vol. 39, issue 1, 356-366

Abstract: This study reports on numerical predictions of velocity and pressure fields, and dust particles trajectories in steady and unsteady flows around a full-scale paraboloidal solar dish. Calculations are performed for three wind speeds of 4.16, 9.72, and 15.2 m s−1, and dish pitch angles from 0° to 180°. The flow field structure, lift and drag coefficients are calculated for each flow configuration. Using the predicted mean flow velocity field, analytical expressions for the aerodynamic coefficients, as a function of the pitch angle, are developed. The unsteady-state flow is characterised by formation of stable vortices behind the dish for most flow configurations, except at 60° and 150° pitch angles. At these angles vortex-shedding occurred with a strong flow oscillation extending downstream the dish. The calculations of dust particles trajectories provide a qualitative assessment of the deposition rate, dish orientation, and surface locations where dust accumulation is most likely to occur. The study also presents an initial assessment of the effectiveness of various windbreaks installed upstream of the dish in reducing aerodynamics drag.

Keywords: Turbulent flow; Dust deposition; Paraboloidal solar dish; CFD; Windbreaks (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111004976
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:39:y:2012:i:1:p:356-366

DOI: 10.1016/j.renene.2011.08.038

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:356-366