Performance calculations for closed-loop air-to-water solar hybrid heating systems with and without a rock bed in the solar air heater
C. Choudhury and
H.P. Garg
Renewable Energy, 1993, vol. 3, issue 8, 897-905
Abstract:
A transient analysis has been carried out on a hybrid solar water heater which comprises a rock bed air heater with optimum design parameters in conjunction with an air-to-water transverse fin shell-and-tube heat exchanger (mixed air and unmixed water type) in which cold water from the storage tank receives heat from the hot air coming out of the air heater which flows in the shell at right angles to the water flowing in the tubes. The system's performance has been evaluated for typical winter weather conditions in Delhi for different combinations of flow rates of air and water for different volumes of the water storage tank. No hot water is assumed to be withdrawn from the tank to serve the load. A comparative analysis of the system's performance with and without a rock bed in the air heater reveals about 11°C higher temperature of storage tank in the former at 50 kg/h m2 air flow rate. With both the air heater types, although the system performance was observed to increase with the rates of air and water flow, no significant improvement in system performance was achieved at Ṁw ⩾ 2Ṁa.
Date: 1993
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/096014819390048L
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:3:y:1993:i:8:p:897-905
DOI: 10.1016/0960-1481(93)90048-L
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().