A numerical study on anode thickness and channel diameter of anode-supported flat-tube solid oxide fuel cells
Joonguen Park,
Joongmyeon Bae and
Jae-Yuk Kim
Renewable Energy, 2012, vol. 42, issue C, 180-185
Abstract:
Fuel cells convert the chemical energy present in fuel (e.g., hydrogen) into electrical energy with high efficiency, low pollution and low noise. Of the various types of fuel cells, the solid oxide fuel cell (SOFC) was developed specifically for power plants and residual power systems. SOFCs are classified into three categories based on their shape: planar, cylindrical and flat-tube. The flat-tube SOFC (FT-SOFC) exhibits the advantages of ease in sealing, low stack volume and low current-collecting resistance. However, due to its weak strength, the FT-SOFC may get deformed or break during the manufacturing process. To improve the cell strength, the cell support must be thickened. However, as the support thickness is increased, the electrons must travel a longer distance, which leads to an increase in the electrical resistance. In another method, the hydrogen channel diameter can be reduced for the strong strength. But, it may lead to a corresponding decrease in the hydrogen mass transfer rate. In this manuscript, we study the performance of several FT-SOFC designs and suggest the better design. The numerical analysis for the FT-SOFC incorporates several physical phenomena such as gas flow, heat transfer and electrochemical reactions. The governing equations (i.e., mass, momentum, energy and species balance equations) are calculated for heat and mass transfer. The open circuit voltage, activation polarization, ohmic polarization and contact resistance are simulated simultaneously. The experimental results are compared with the numerical data for the purposes of code validation. The current density and temperature distribution are then investigated on the SOFC surface. The average current density decreases by 14.6% if the hydrogen channel diameter is narrowed by 50%, and by 10.2% if the support thickness is increased by 50%. Based on these results, we present a design for a stack of FT-SOFCs.
Keywords: Solid oxide fuel cell (SOFC); Flat-tube; Multi-physics simulation; Heat and mass transfer (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111004666
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:42:y:2012:i:c:p:180-185
DOI: 10.1016/j.renene.2011.08.022
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().