Control of wind turbine power and vibration with a data-driven approach
Andrew Kusiak and
Zijun Zhang
Renewable Energy, 2012, vol. 43, issue C, 73-82
Abstract:
An anticipatory control scheme for optimizing power and vibration of wind turbines is introduced. Two models optimizing the power generation and mitigating vibration of a wind turbine are developed using data collected from a large wind farm. To model the wind turbine vibration, two parameters, drive-train and tower acceleration, are introduced. The two parameters are measured with accelerometers. Data-mining algorithms are applied to establish models for estimating drive-train and tower acceleration parameters. The prediction accuracy of the data-driven models is examined in order to address their feasibility for an anticipatory control scheme. An optimization control model is established by integrating the data-driven models in the presence of constraints. A particle swarm optimization algorithm is applied to optimize the model.
Keywords: Turbine vibration; Turbine control; Drive-train acceleration; Tower acceleration; Data-mining; Particle swarm optimization (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148111006264
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:43:y:2012:i:c:p:73-82
DOI: 10.1016/j.renene.2011.11.024
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().